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Abstract

A surface capturing method is developed for the computation of steady water–air flow with gravity. Fluxes are based on artificial
compressibility and the method is solved with a multigrid technique and line Gauss–Seidel smoother. A test on a channel flow with
a bottom bump shows the accuracy of the method and the efficiency of the multigrid solver.
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1. Introduction

In the design of ships and offshore structures, computations of steady water flow play an important role, e.g.,
computations of the wave pattern and friction drag of ships can help in optimising ship designs for low drag. To enable
efficient design, these computations must be fast and accurate. A well-known technique for computing steady flows
is to time-march the unsteady flow equations to steady state. But water flows with free surfaces and gravity effects
need a long time to reach a steady state, as they show traveling waves that damp out very slowly. So when large-scale
3D water flows are computed, the size and the complexity of the flows that can be computed is reduced significantly.
Therefore, more efficient solution techniques are highly desirable and often used [5,6].

Most existing surface-fitting methods, i.e., methods that model the free surface by deforming the mesh to fit the water
surface, are equipped with efficient steady solvers. But if the free surface is modelled with a surface capturing method,
like the volume-of-fluid or level set technique, time marching is still the most widely used solution method. A great
advantage of surface capturing techniques is that they can handle nonlinear steep waves and near-breaking waves, as
well as complex geometries near the water surface. But to fully use this advantage in the computation of steady flow,
an efficient solution method is needed.
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We are developing a method for 2D water flow based on steady flow equations. Both the water flow and the air flow
above it are modelled. A modified volume-of-fluid capturing technique is used to find the water–air interface and the
system is solved with a multigrid method. The flux function is based on artificial compressibility.

2. Flow equations

In order to get a flow discretisation that can be solved easily with multigrid, we base our flow equations on conservation
laws only. The water–air interface appears as a mixture zone, with a smooth transition from water to air. The flow of
this mixture satisfies the Navier–Stokes equations, just like the pure fluids; therefore, the same equations are valid
everywhere in the domain, as long as the bulk density is properly defined. To distinguish between the fluids, we add a
mass conservation equation for one of the fluids. Water and air are both considered incompressible: they have constant
densities. Defining � as the volume fraction of water, the mixture density is � = �w� + �a(1 − �). Substituting this
relation in the steady compressible (variable-density) 2D Navier–Stokes equations with gravity yields the following,
incompressible flow equations:

�

�x
(u) + �

�y
(v) = 0 (tot. mass),

�

�x
(p + �u2) + �

�y
(�uv) = �

�x
(�ux) + �

�y
(�uy) (x-mom.),

�

�x
(�uv) + �

�y
(p + �v2) = �

�x
(�vx) + �

�y
(�vy) − �g (y-mom.),

�

�x
(u�) + �

�y
(v�) = 0 (water mass). (1)

As opposed to single-fluid incompressible flow, the density is not constant, so it cannot be divided out in the momentum
equations. However, it still disappears from both continuity equations: total mass conservation has its standard form
ux +vy =0 and mass conservation for the water reduces to a volume-of-fluid equation. So we have a system of equations
that is equivalent to volume-of-fluid, but that is completely in conservation form.

3. Flux function

System (1) is discretised with a cell-centred finite-volume technique. The states left and right of the cell faces are
taken equal to the state in the cell centre: a first-order reconstruction. Then a flux function is used to compute the flux
across the cell face from these two states. The flux function is split in a convective and a diffusive part, to independently
control the stability of these parts. And because of the splitting, different boundary conditions can be assigned for
convection and diffusion, consistent with the fluxes.

3.1. Linearised Osher convective flux

We discretise the convective part of the flux with the artificial compressibility technique [2,7], that guarantees stability:
in the time-dependent flow equations, artificial time derivatives are added to the continuity equations. The resulting
hyperbolic system is used to define a Riemann flux function, which is substituted back into the steady flow equations.
These are then solved directly with the multigrid technique. Such a technique is also used in [3].

The two-fluid artificial compressibility equations are found by assuming that the densities of the pure fluids in
the continuity equations have time derivatives (�w)t = pt/c

2
w, (�a)t = pt/c

2
a (but zero gradients!). The parameters

cw and ca, with the dimension of velocity, can be chosen freely. We choose �wc2
w = �ac

2
a = c2, with a constant

c, to simplify the resulting equations. Substituting this in the time-dependent version of (1) and taking only the
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convective part, we get

1

c2 pt + �

�x
(u) + �

�y
(v) = 0,

�

�t
(�u) + �

�x
(p + �u2) + �

�y
(�uv) = 0

�

�t
(�v) + �

�x
(�uv) + �

�y
(p + �v2) = 0,

�t + �

c2 pt + �

�x
(u�) + �

�y
(v�) = 0. (2)

The two pt ’s are the artificial time derivatives. Note that the time derivatives in this system cannot be written in
conservation form.

System (2) is hyperbolic, so it can be used to construct an Osher type flux function. Writing the system in quasilinear
form and regarding only the x-derivatives, we get a system qt + Jqx = 0. The eigenvalues of the Jacobian matrix J are

�− = 1
2u −

√
c2/� + ( 1

2u)2, �0,1 = u, �0,2 = u, �+ = 1
2u +

√
c2/� + ( 1

2u)2. (3)

The four corresponding Riemann invariants are

dJ− = dp + ��−du, J 0,1 = v, J 0,2 = �, dJ+ = dp + ��+du. (4)

These values are comparable with the results for the compressible Euler equations: there are two pressure characteristics,
running left and right into the flow. However, there is no ‘sound speed’, the pressure waves have different velocities
with respect to the flow. Note that �− �0 and �+ �0, always. The volume fraction � and the tangential velocity v are
convected with the flow.

Now we construct a flux function based on an approximate solution of the Riemann problem. Like in Osher’s flux
function, this approximate solution is found with the characteristic waves. The initial states 0 and 1 of the problem are
chosen as the states on the left and right side of a cell face. As mentioned, two pressure waves appear, always running
left and right: the output state 1

2 lies between these waves. The pressure jumps over the cell faces are not large, since
incompressible flow is smooth (no shocks); therefore, we can linearise the outer waves. The pressures and the velocities
between the waves are equal:

p1/2 = p0 − �0�
+
0 (u1/2 − u0) = p1 − �1�

−
1 (u1/2 − u1), (5)

and thus,

u1/2 = u0 + p1 − p0 + �1�
−
1 (u1 − u0)

�1�
−
1 − �0�

+
0

,

p1/2 = p0 − �0�
+
0

p1 − p0 + �1�
−
1 (u1 − u0)

�1�
−
1 − �0�

+
0

. (6)

The other two state variables, v and �, do not change over the pressure waves. Therefore, they are chosen purely upwind:

v1/2 = v0, �1/2 = �0 if u1/2 �0,

v1/2 = v1, �1/2 = �1 if u1/2 < 0. (7)

We construct convective fluxes with these state variables.
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3.2. Diffusive flux

The diffusive fluxes in the momentum equations are modelled with central differences, e.g.:

(�ux)1/2 = �1/2
u1 − u0

�x
,

(�vx)1/2 = �1/2
v1 − v0

�x
, (8)

with �1/2 = �1/2�w + (1 − �1/2)�a. This definition of � follows when we assume equal strain for the two fluids and
average the stress. For non-cartesian grids, (8) is approximated with a control volume approach.

3.3. Gravity

The gravity term in the y-momentum equation is added as a source term −�ig�x�y to the sum of the fluxes in
each cell. With that source term present, the cell-face states for the Riemann solver must be adapted, as this solver
has a strong coupling between pressure and velocity. And in a uniform horizontal flow with gravity, there is a vertical
pressure gradient without a velocity gradient. When simple first-order cell face states are fed to the Riemann solver,
then there is a pressure jump across each lower–upper cell face. The Riemann solver reacts to this by specifying an
(incorrect) vertical velocity at the cell face. We reduce this problem by subtracting the pressure gradient due to gravity
from the input states for the Riemann solver:

plower
i,j+1/2 = pi,j − �i,j g

�y

2
,

p
upper
i,j+1/2 = pi,j+1 + �i,j+1g

�y

2
. (9)

Thus, in a horizontal uniform flow, the Riemann solver sees no pressure jumps (in that case, the pressures in (9) are
equal) and computes zero vertical velocities. In other flows, the erroneous vertical velocities are reduced an order in
the grid size.

4. Smoothing

The multigrid solution technique is based on a local relaxation technique or smoother. Starting from an initial
solution, this smoother locally reduces the error in each cell. Repeated application in an iterative process makes
the solution converge to the steady flow solution. The smoother must be well adapted to the type of equations to
be solved. Here, with the very high Reynolds numbers and density ratios of water–air flow, a robust smoother is
needed.

We use alternating line Gauss–Seidel smoothing. This procedure simultaneously resets the state in a line of cells,
such that the net flux into all cells in that line is zero, given the current state in the other cells. This current state is the old
state in the cells that have not yet been updated and the new state in all other cells. The direction of the lines is alternately
horizontal and vertical. The updating of a line requires the simultaneous solution of the nonlinear flow equations in each
cell of the line; this is done with a Newton–Raphson (NR) iterative root-finder. This procedure requires the derivatives
of the fluxes with respect to the state. For the Osher solver, these derivatives are known analytically: they are computed
together with the fluxes. The NR solution can be computed efficiently, because the linearised system to be solved in
the iterations is block-tridiagonal: each cell influences only its two neighbours in the line. Therefore, the total work for
a single NR step depends linearly on the total number of cells, just like for point smoothers.

An important aspect of the smoother is its smoothing factor, the highest amplification factor of an error component
in the solution, on application of the smoother. When the flow equations are linearised, this factor can be found using
Fourier analysis. This smoothing factor, for a range of error frequencies, is shown in Fig. 1. The horizontal and vertical
frequency of the error mode are on the coordinate axes. The flow is linearised around the uniform flow u = U = 1,
v = 0, p = P , � = A = 1 (baseline settings). The high-frequency errors outside the inner box must be damped well,
the multigrid procedure takes care of the low-frequency errors. Fig. 1a shows the excellent smoothing of alternating
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Fig. 1. Smoothing factor for alternating line smoothing with baseline settings (a), with A = 0 (b), with diagonal flow ↗ (c) and with
underrelaxation (d).

line Gauss–Seidel: all high frequencies are damped with a factor 0.3 or less. In the other three figures, one parameter
in the baseline is changed. In Fig. 1b, the density is A = 0. Clearly, the flow equations change a lot, but the smoothing
is still excellent. And even when the flow direction is changed to U = 1, V = 1, in Fig. 1c, the damping is still fine. A
small problem is the instability of the smoother for very low frequencies (seen in Fig. 1a and c), this can be removed
by using a slight underrelaxation (Fig. 1d). Altogether, the line relaxation is an efficient smoother for a wide range of
conditions.

5. Multigrid

The multigrid technique that is combined with the Gauss–Seidel smoothing from the last section is well documented
[4]. Its principle is to smooth the high-frequency errors on the finest grid (called K) and the lower-frequency errors on
a series of underlying coarser grids 0 · · · K − 1. The procedure used here is described below.

Denote the Navier–Stokes equations (1) including gravity, discretised on a grid k, by the operator Fk . Then the
general problem on each grid is Fkqk = fk , the final problem to be solved is FKqK = 0. We call the smoothing operator
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Mk and introduce a prolongation operator P k
k−1 that copies a correction from one cell on grid k − 1 to the four cells on

grid k that lie in the same location. In the same way, a (four-point average) restriction operator Rk−1
k is defined for the

defect. Then the nonlinear multigrid (NMG) procedure is defined recursively as follows. It is started on the finest grid,
with fK = 0.

qn+1
k = recursive function NMG(k, qn

k , fn
k )

q̃n
k = (Mk)

q1 qn
k (q1 pre-relaxation steps), (10a)

if k �= 0 then

fn
k−1 = Fk−1qn

k−1 − sn
k−1R

k−1
k (Fkq̃n

k − fn
k ) (source term), (10b)

qn+1
k−1 = NMG(k − 1, qn

k−1, fn
k−1) (MG on coarser grid), (10c)

˜̃qn

k = q̃n
k + 1

sn
k−1

P k
k−1(q

n+1
k−1 − qn

k−1) (correction), (10d)

end if

qn+1
k = (Mk)

q2 ˜̃qn

k (q2 post-relaxation steps). (10e)

This procedure is standard. The only problem is, that the nonlinear operators Fk cannot handle large source terms. For
example, a source term could specify a sink for water in a cell whose neighbours contain only air. The only way to
get a net inflow of water in that cell is to take a negative amount of water in the cell itself. This may lead to negative
densities. Or if a large sink of mass is specified, we may get a cell with inflow on all cell faces. It is impossible to set
the net inflow of water into such cells, since the flux of � is determined purely upwind: it does not depend on � in the
cells itself.

Therefore, the source term fn
k−1 must always be sufficiently small. For small source terms, the operator Fk gives

sensible output and the NR processes converge. The two terms of fn
k−1 (Eq. (10b)) are made small as follows:

Fk−1qn
k−1: Pick the right starting solution qn

k−1. The ideal qn
k−1 is that state, for which Fk−1qn

k−1 ≈ 0. This state is
available, as we use an FMG procedure, i.e., we set the first solution q0

k on each grid k, from grid 1 upwards, by solving
Fk−1qk−1 = 0 on the next coarsest grid and prolongating this solution to grid k. As a bonus, we get qk−1 for which
Fk−1qk−1 ≈ 0. These states are used as the initial solution qn

k−1 for each coarse grid correction step.

sn
k−1R

k−1
k (Fkq̃n

k − fn
k ): This term is made small by simply setting the scaling sn

k−1 small whenever the other term is
large. The coarse grid correction does not depend much on the value of s, so we use a straightforward choice for sn

k−1:

sn
k−1 = min

(
1,

1

D max |Rk−1
k (Fkq̃n

k − fn
k )|

)
. (11)

D = 102 works in practice. Also, more elaborate choices for sn
k−1 are possible.

6. Cahouet test case

As a test, the flow in a channel with a bottom bump is computed. Experimental results for this test are given by
Cahouet [1]. Two cases are computed.

The first has a Froude number of 2.05 (based on inflow water height). The inflow velocity profile is as measured by
Cahouet. To keep the flow laminar, the Reynolds number is taken lower than in the experiment: Re = 1520. To prevent
too thick boundary layers, the top and bottom are modelled as slip walls. The bump has a thickness of 44% of the
water height. The curvilinear grid has 128 × 512 cells. In the velocity plot (Fig. 2a), we see low-velocity regions near
the leading and trailing edge of the bump and high-velocity regions above the bump and especially in the air region
near the top wall. The volume fraction (Fig. 2b) shows the water surface. At the outflow wall, the interface is spread
over five cells. A grid convergence study (Fig. 2c) shows a nearly converged solution and rather good agreement with
Cahouet’s experiment. The slightly flatter wave may be caused by the absence of a boundary layer.
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Fig. 3. Cahouet test case, Fr = 0.43. Vertical velocity (a), volume fraction (b) and a grid convergence study of the water surface (c).

The second test case is a flow with Fr =0.43, Re=3333, uniform inflow and no-slip lower wall. The grid is stretched
on the inflow and outflow side to prevent wave reflection. The stretched cells have a higher aspect ratio (> 10) than
the more or less square cells in the centre, but this causes no convergence problems. Due to the stretching, the flow
approaching the bump has developed a boundary layer on the bottom. The solution has a wave train developing behind
the bump (Fig. 3b). The velocity is continuous over the water surface, the upward— downward motion in the wave train
can be seen both in the air and in the water (Fig. 3a). Note that these pictures do not show the entire grid, a part of the
stretched grid extends beyond the picture boundaries. A grid refinement study (Fig. 3c) shows that the current solution
is far from converged. This is mostly caused by laminar separation from the bottom bump, which is not present in the
(turbulent) experiment. So for the accurate solution of this problem, a higher-order method with turbulence modelling
is needed.

To assess the efficiency of multigrid, the second test problem is solved both with multigrid on seven grids and with
pure Gauss–Seidel smoothing on a single grid. Multigrid convergence improves when the coarsest grid has as few cells
as possible; our coarsest grid is the coarsest one that still sees the bottom bump (2 × 8 cells). Convergence plots are
shown in Fig. 4. The NMG strategy (Section 5) gives the ‘sawtooth’ convergence graph 4a. Only the last 26 are the
(expensive) iterations on the finest level. A table of the CPU times on a 1667 MHz PC (Table 1) shows that the use
of multigrid greatly reduces the computation time, compared with the single-grid line smoothing. A comparison with
single-grid time marching to convergence was not done, but time marching is almost certainly even less efficient than
the single-grid line smoother.
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Fig. 4. Convergence histories for multigrid (a) and single grid Gauss–Seidel (b).

Table 1
Cahouet testcase: iterations and CPU time needed for convergence

Method Iterations CPU time (s)

Multigrid (seven grids) 95 (26) 690
Single grid line Gauss–Seidel 822 17184

7. Conclusion

A surface-capturing method has been developed for the two-fluid incompressible Navier–Stokes equations with grav-
ity. The steady flow equations are solved efficiently with a combination of multigrid and line Gauss–Seidel smoothing.

The flux discretisation is derived from an artificial compressibility approach. This formulation is used to construct
a linearised Osher flux function for the convective fluxes. This flux function has a strong pressure–velocity coupling
and is highly nonlinear, yet it gives a stable Gauss–Seidel iteration. A standard multigrid procedure is used. Due to
the nonlinear behaviour of the flux function, the coarse grid correction steps cannot handle large source terms. This
problem is solved by using smart initial solutions on the coarse grids and by a scaling of the defect from the finer grids.

A test case, the flow in a channel with a bottom bump, shows that the method gives good solutions for different
flow regimes and that it is much faster than comparable solution techniques without multigrid. For better accuracy, a
higher-order method with turbulence modelling is needed.
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